## ON CERTAIN GENERALIZATIONS OF THE PROBLEM OF THREE BODIES.

By EDGAR ODELL LOVETT,

The Rice Institute, Houston, Texas.

## (Read April 23, 1909.)

The object of the following note is fourfold: first, to determine all the problems of three bodies in which the bodies describe conic sections, under central conservative forces, whatever be the initial conditions of the motion ; second, to specialize the preceding solutions, so as to single out those in which the force-function contains only the masses of the bodies and their mutual distances; third, to generalize the latter group to the case in which the orbits are the most arbitrary possible; fourth to generalize the last to the case in which the functions defining the orbits appear in the potential function.
I. If three given particles $\left(r_{1}, \theta_{1} ; m_{1}\right),\left(r_{2}, \theta_{2} ; m_{2}\right),\left(r_{3}, \theta_{3} ; m_{3}\right)$ describe, under central censervative forces, three given coplanar curves whose equations in polar coördinates referred to the center of gravity of the system are

$$
\begin{equation*}
f_{1}\left(r_{1}, \theta_{1}\right)=0, \quad f_{2}\left(r_{2}, \theta_{2}\right)=0, \quad f_{3}\left(r_{3}, \theta_{3}\right)=0 . \tag{I}
\end{equation*}
$$

the forces are derived from a potential function which may be written in the form ${ }^{1}$

$$
\begin{equation*}
P=\frac{c^{2} \sum_{i=1}^{3} m_{i}\left\{\left(\frac{\partial f_{i}}{\partial r_{i}}\right)^{2}+\left(\frac{\mathrm{I}}{r_{i}} \frac{\partial f_{i}}{\partial \theta_{i}}\right)^{2}\right\}}{\left\{\sum_{i=1}^{3} m_{i} r_{i} \frac{\partial f_{i}}{\partial r_{i}}\right\}^{2}}, \tag{2}
\end{equation*}
$$

${ }^{1}$ On employing the usual substitutions the form given follows immediately from Oppenheim's solution in rectangular coördinates. See his memoir in the third volume of the Publications of the von Kuffner Observatory.
where $c$ is the constant in the integral of areas, that is,

$$
\begin{equation*}
c=\sum_{i=1}^{3} m_{i} r_{i}^{2} \frac{d \theta_{i}}{d t} \tag{3}
\end{equation*}
$$

In case the orbits are described independently of the initial conditions, Oppenheim has remarked that it must be possible to throw the function $P$ into the form

$$
\begin{equation*}
P=P_{1}+h \tag{4}
\end{equation*}
$$

where $h$ is a constant independent of the parameters which enter $P_{1}$; if such a decomposition of $P$ is impossible, the motion takes place only for special values of the initial constants.

When the orbits are conic sections the equations (I) become
(5) $f_{i}\left(r_{i}, \theta_{i}\right)=r^{2}{ }_{i}\left(A_{i} \cos ^{2} \theta_{i}+2 H_{i} \sin \theta_{i} \cos \theta_{i}\right.$
$\left.+B_{i} \sin ^{2} \theta_{i}\right)+2 r_{i}\left(G_{i} \cos \theta_{i}+F_{i} \sin \theta_{i}\right)-C_{i}=0, \quad(i=1,2,3$.
If the corresponding functions

$$
\frac{\partial f_{i}}{\partial r_{i}}, \quad r_{i} \frac{\partial f_{i}}{\partial r_{i}}, \quad \frac{\mathrm{I}}{r_{i}} \frac{\partial f_{i}}{\partial \theta_{i}}
$$

are constructed, and substituted in the form (2) the latter becomes

$$
Q=\frac{c^{2}}{2} \frac{\sum_{i=1}^{3} m_{i}\left\{\left(H_{i}^{2}-A_{i} B_{i}\right) r_{i}^{2}+2\left[\left(H_{i} F_{i}-B_{i} G_{i}\right) \cos \theta_{i}\right.\right.}{\left.+\left(H_{i} G_{i}-A_{i} F_{i}\right) \sin \theta_{i}+F_{i}^{2}+G_{i}^{2}+\left(A_{i}+B_{i}\right) C_{i}\right\}}\left\{\begin{array}{l}
\left\{\sum_{i=1}^{3} m_{i}\left[\left(G_{i} \cos \theta_{i}+F_{i} \sin \theta_{i}\right) r_{i}-C_{i}\right]\right\}^{2}
\end{array}\right.
$$

this is the most general form of potential function giving rise to conic section trajectories in the problem of three bodies under central conservative forces.
2. From the relations
(7) $\quad m_{i} m_{j \rho_{i j}}{ }^{2}=m_{i}\left(m_{i}+m_{j}\right) r_{i}{ }^{2}+m_{j}\left(m_{i}+m_{j}\right) r_{j}^{2}-m_{k}{ }^{2} r_{r_{k}}{ }^{2}$,

$$
i j k=123,231.312,
$$

where $\rho_{i j}$ is the distance between the bodies $\left(r_{i}, \theta_{i} ; m_{i}\right)$ and ( $r_{j}, \theta_{j} ; m_{j}$ ), it follows that if $Q$ is to be a function of the masses and mutual distances alone we must have

$$
\begin{equation*}
F_{i}=G_{i}=0, \quad(i=1,2,3) \tag{8}
\end{equation*}
$$

If in addition we have

$$
\begin{gather*}
H_{1}^{2}-A_{1} B_{1}=H_{2}^{2}-A_{2} B_{2}=H_{3}{ }^{2}-A_{3} B_{3}=\text { some constant, } \\
\text { say } \frac{k}{c^{2}}\left\{\sum_{i=1}^{3} m_{i} C_{i}\right\}^{2}, \tag{9}
\end{gather*}
$$

the function $Q$ may be written

$$
\begin{equation*}
Q=k \sum_{i=1}^{3} m_{i} r_{i}^{2}+c^{2} \frac{\sum_{i=1}^{3} m_{i}\left(A_{i}+B_{i}\right) C_{i}}{\left\{\sum_{i=1}^{3} m_{i} C_{i}\right\}^{2}}=Q_{1}+h . \tag{io}
\end{equation*}
$$

Finally, no noting that the equations (7) lead to the relation

$$
\begin{equation*}
\left(\sum_{i=1}^{3} m_{i}\right) \sum_{i=1}^{3} m_{i} r_{i}^{2}=m_{1} m_{2} \rho_{12}{ }^{2}+m_{2} m_{3} \rho_{23}{ }^{2}+m_{3} m_{1} \rho_{31}{ }^{2} \tag{II}
\end{equation*}
$$

we have $Q_{1}$ in the well-known form

$$
\begin{equation*}
Q_{1}=\frac{\hbar}{\sum_{i=1}^{3} m_{i}}\left(m_{1} m_{2} \rho_{12}{ }^{2}+m_{2} m_{3} \rho_{23}{ }^{2}+m_{3} m_{1} \rho_{31}{ }^{2}\right), \tag{12}
\end{equation*}
$$

which is thus made to appear as the unique case of conic section orbits for all initial conditions under forces varying as the masses and a function of the mutual distances.

It may be observed here parenthetically that if a similar study be made for the cubic a first condition will be found to demand that the orbits be defined by equations of the form

$$
\begin{equation*}
a_{i \cdot r_{i}}{ }^{3}+3 b_{i} x_{i}^{2} y_{i}-3 a_{i} \cdot x_{i} y_{i}^{2}-b_{i} y_{i}^{3}-C_{i}=0, \quad(i=\mathrm{I}, 2,3) ; \tag{I3}
\end{equation*}
$$ the remaining analysis of the problem offers no difficulty.

3. Writing

$$
\begin{equation*}
\frac{\partial f_{i}}{\partial r_{i}}=u_{i}, \quad \frac{\partial f_{i}}{\partial \theta_{i}}=v_{i}^{\prime} \tag{14}
\end{equation*}
$$

the function (2) becomes

$$
\begin{equation*}
\frac{c^{2}}{2} \sum_{i=1}^{3} m_{i}\left(u_{i}^{2}+\frac{v_{i}^{2}}{r_{i}^{2}}\right) /\left\{\sum_{i=1}^{3} m_{i} r_{i} u_{i}\right\}^{2} ; \tag{15}
\end{equation*}
$$

considering the case in which

$$
\begin{equation*}
\frac{\sum_{i=1}^{3} m_{i}\left(u_{i}^{2}+\frac{v_{i}^{2}}{r_{i}^{2}}\right)}{\left\{\sum_{i=1}^{3} m_{i} r_{i} u_{i}\right\}^{2}} \equiv \frac{\sum_{i=1}^{3} m_{i} \phi_{i}\left(r_{i}\right)}{\left\{\sum_{i=1}^{3} m_{i} \psi_{i}\left(r_{i}\right)\right\}^{2}}, \tag{ı6}
\end{equation*}
$$

we find immediately that

$$
\begin{equation*}
u_{i}=\frac{\phi_{i}}{r_{i}}, \quad v_{i}^{2}=r_{i}^{2} \phi_{i}-\psi_{i}^{2} ; \tag{17}
\end{equation*}
$$

and on subjecting these values of $u_{i}$ and $v_{i}$ to the condition of integrability we have the following relations

$$
\begin{equation*}
r_{i}{ }^{2} \phi_{i}-\psi_{i}{ }^{2}=\text { some constant, say } \lambda_{i}{ }^{2}, \quad(i=\mathrm{I}, 2,3), \tag{18}
\end{equation*}
$$

connecting the functions $\phi_{i}$ and $\psi_{i}$. The construction of the functions defined by the equations (17) and (18) is effected directly by a simple integration which yields the result that under forces derived from the potential function

$$
\begin{equation*}
R=\frac{c^{2}}{2} \sum_{i=1}^{3} m_{i}\left(\frac{\psi_{i}^{2}+\lambda_{i}^{2}}{r_{i}^{2}}\right) /\left\{\sum_{i=1}^{3} m_{i} \psi_{i}\right\}^{2}, \tag{I9}
\end{equation*}
$$

three arbitrary masses $m_{i}$ describe the respective orbits

$$
\begin{equation*}
\int \frac{\psi_{i}\left(r_{i}\right)}{r_{i}} d r_{i}= \pm \lambda_{i} \theta_{i}+\mu_{i}, \quad(i=\mathrm{I}, 2,3) \tag{20}
\end{equation*}
$$

where the function $\psi_{i}$ is absolutely arbitrary, and the quantities $\lambda_{i}, \mu_{i}$ are any two constants.

In virtue of the relations (7) the function $R$ contains only the masses and mutual distances of the bodies, further, on writing the function $\psi_{i}{ }^{2}$ in the form

$$
\begin{equation*}
\psi_{i}{ }^{2}=a_{i} r_{i}{ }^{2}+\omega_{i}\left(r_{i}\right), \tag{21}
\end{equation*}
$$

where $\omega_{i}$ is an arbitrary function and $a_{i}$ any constant, it is evident that $R$ can be written in the form (4) ; whence it follows that the three bodies under forces derived from (19) describe orbits of the form (20) whatever be the initial conditions of the motion of the system.
4. In order to generalize certain of the preceding results further, let us write the equations of the orbits thus

$$
\begin{equation*}
z_{i} \equiv f_{i}\left(x_{i}, y_{i}\right)-c_{i}=0, \quad(i=\mathrm{I}, 2,3) \tag{22}
\end{equation*}
$$

and the potential function as follows:

$$
\begin{equation*}
P=\frac{c^{2}}{2} \sum_{i=1}^{3} m_{i}\left(p_{i}^{2}+q_{i}^{2}\right) /\left[\sum_{i=1}^{3} m_{i}\left(x_{i} p_{i}+y_{i}^{\prime} q_{i}\right)\right]^{2} \tag{23}
\end{equation*}
$$

the axes being rectangular about the center of gravity of the system as origin.

Let us consider now the case in which we have

$$
\text { (24) }\left\{\begin{array}{l}
p_{i}{ }^{2}+q_{i}{ }^{2}=\phi_{i}\left(x_{i}, y_{i}, z_{i} ; r_{i}\right), \\
x_{i} p_{i}+y_{i} q_{i}=\psi_{i}\left(x_{i}, y_{i}, z_{i} ; r_{i}\right) ;
\end{array} r_{i}{ }^{2}=x_{i}{ }^{2}+y_{i}{ }^{2} \quad(i=\mathrm{I}, 2,3),\right.
$$

from these it at once follows that

$$
\left\{\begin{array}{l}
r_{i}{ }^{2} p_{i}=x_{i} \psi_{i} \pm y_{i} \sqrt{{r_{i}}^{2} \phi_{i}-\psi_{i}{ }^{2},}  \tag{25}\\
r_{i}{ }^{2} q_{i}=y_{i} \psi_{i} \mp x_{i} \sqrt{{r_{i}{ }^{2} \phi_{i}}-\psi_{i}{ }^{2} .}
\end{array} \quad(i=\mathrm{I}, 2,3)\right.
$$

The condition of integrability applied to (25) gives

$$
\begin{array}{r}
r_{i}{ }^{2}\left\{2 \phi_{i}\left(\mathrm{I}-\psi_{i_{z_{i}}}\right)+x_{i} \phi_{i_{x_{i}}}+y_{i} \phi_{i_{y_{i}}}+r_{i} \phi_{i_{r_{i}}}+\psi_{i} \phi_{i_{z_{i}}}\right\}-2 \psi_{i}\left(x_{i} \psi_{i_{x_{i}}}\right. \\
\left.+y_{i} \psi_{i_{y_{i}}}+r_{i} \psi_{i_{r_{i}}}\right) \pm 2\left(x_{i} \psi_{i_{y_{i}}}-y_{i} \psi_{i_{x_{i}}}\right) \sqrt{r_{i}^{2} \phi_{i}-\psi_{i}^{2}}=0,  \tag{26}\\
(i=1,2,3)
\end{array}
$$

an equation whose integration determines $\phi_{i}$ when $\psi_{i}$ is given, and conversely.
(a) In case the functions $\phi_{i}$ and $\psi_{i}$ contain only $r_{i}$ the equation (26) becomes

$$
\begin{equation*}
\frac{d}{d r_{i}^{\prime}}\left(r_{i}^{2} \phi_{i}-\psi_{i}^{2}\right)=0, \tag{27}
\end{equation*}
$$

that is to say, it takes the form (18). Accordingly the equations (25) assume the simpler forms

$$
\begin{equation*}
r_{i}{ }^{2} p_{i}=x_{i} \psi_{i} \pm \lambda_{i} y_{i}, \quad r_{i}{ }^{2} q_{i}=y_{i} \psi_{i} \mp \lambda_{i} x_{i}, \tag{28}
\end{equation*}
$$

whence, by integration, the orbits (20) reappear.
(b) Let $\phi_{i}$ be a function only of $r_{i}$ and $\psi_{i}$ a function of $n_{i} \tilde{i}$,
where $n_{i}$ is an arbitrary constant ; then the condition (26) becomes

$$
\begin{equation*}
r_{i}\left\{2 n_{i} r_{i} \phi_{i}-\frac{d}{d r_{i}}\left(r_{i}^{2} \phi_{i}\right)\right\}=0, \quad(i=1,2,3), \tag{29}
\end{equation*}
$$

from which we conclude that

$$
\begin{equation*}
\phi_{i}=\alpha_{i}^{2} r_{i}^{2\left(n_{i}-1\right)}, \tag{30}
\end{equation*}
$$

$\alpha_{i}$ being any constant. The expressions (25) in this case assume the form

$$
\left\{\begin{array}{l}
r_{i}^{2} p_{i}=n_{i} x_{i} z_{i} \pm y_{i} \sqrt{\alpha_{i}^{2} r_{i}^{2\left(n_{i}-1\right)}-n_{i}^{2} z_{i}^{2}}  \tag{3I}\\
r_{i}^{2} q_{i}=n_{i} y_{i} z_{i} \mp x_{i} \sqrt{\alpha_{i}^{2} r_{i}^{2\left(n_{i}-1\right)}-n_{i}^{2} z_{i}^{2} .}
\end{array}\right.
$$

The determination of the form of $z_{i}$ from the equations (31) can be affected perhaps most simply in the following manner: That $\psi_{i}$ is a function only of $n_{i} z_{i}$ amounts to saying that

$$
\begin{equation*}
z_{i}=x_{i}^{n_{i}} f_{i}\left(\frac{y_{i}}{x_{i}}\right) ; \tag{32}
\end{equation*}
$$

substituting the partial derivatives of this function in one or the other of the expressions (31) we obtain the following equation:

$$
\begin{equation*}
\pm \sqrt{\alpha_{i}^{2} r_{i}^{2\left(n_{i}-1\right)}-n_{i}^{2} z_{i}^{3}}=n_{i} \frac{y_{i}}{x_{i}} f_{i}-\left(\mathrm{I}+\frac{y_{i}^{2}}{x_{i}^{2}}\right) f_{i}^{\prime} \tag{33}
\end{equation*}
$$

whence we have the ordinary differential equation

$$
\begin{equation*}
f_{i}^{\prime}=\frac{\mathrm{I}}{\xi_{i}^{2}+\mathrm{I}}\left\{n_{i} \xi_{i} f_{i} \pm \sqrt{\alpha_{i}^{2}\left(\xi_{i}^{2}+\mathrm{I}\right)^{n_{i}}-n_{i}^{2} f_{i}^{2}}\right\}, \quad \xi_{i}=\frac{y_{i}}{x_{i}} . \tag{34}
\end{equation*}
$$

The integration of the latter equation may be facilitated by the substitution

$$
\begin{equation*}
2 v_{i}=n_{i} \log \left(\xi_{i}^{2}+\mathrm{I}\right) \tag{35}
\end{equation*}
$$

under which (34) takes the form

$$
\begin{equation*}
\frac{d f_{i}}{d v_{i}}=f_{i} \pm \frac{1}{n_{i} \sqrt{\frac{v_{i} v_{i}}{n_{i}}}-1} \sqrt{\alpha_{i}^{2} e^{2 v_{i}}-n_{i}^{2} f_{i}^{2}} \tag{36}
\end{equation*}
$$

Putting now

$$
\begin{equation*}
n_{i} f_{i} / \alpha_{i} e^{v_{i}}=\sin u_{i}, \tag{37}
\end{equation*}
$$

the equation (36) becomes

$$
\begin{equation*}
\frac{d u_{i}}{d v_{i}}= \pm \frac{\mathrm{I}}{\sqrt{\frac{2 v_{i}}{n_{i}}}-\mathrm{I}} \tag{38}
\end{equation*}
$$

whence

$$
\begin{equation*}
u_{i}=n_{i} \tan ^{-1}\left\{e^{\frac{2 v_{i}}{n_{i}}}-\mathrm{I}\right\}^{\frac{1}{2}}+\beta_{i} ; \tag{39}
\end{equation*}
$$

that is

$$
\begin{equation*}
f_{i}=\frac{\alpha_{i}}{n_{i}}\left(\xi_{i}^{2}+\mathrm{I}\right)^{\frac{n_{i}}{2}} \sin \left(n_{i} \tan ^{-1} \xi_{i}+\beta_{i}\right) ; \tag{40}
\end{equation*}
$$

or finally the equations of the orbits become

$$
\begin{equation*}
r_{i}^{n_{i}} \sin \left(n_{i} \theta_{i}+\beta_{i}\right)=\gamma_{i} \tag{41}
\end{equation*}
$$

the corresponding form of the force-function may be written down without difficulty.

If we note that for three equal masses the relations (7) squared give

$$
\begin{equation*}
\rho_{i j}^{4}=4\left(r_{i}^{4}+r_{j}^{4}\right)+r_{k}^{4}, \quad i j k=123,231,312, \tag{42}
\end{equation*}
$$

we see that the solution (4I) for $n=3$ is also a solution of the problem of three equal masses under forces varying as the masses and the cube of the distance.
(c) Let $\phi_{i}$ contain both $z_{i}$ and $r_{i}$, while $\psi_{i}$ is a function only of $n_{i \sim i}$; the condition (26) becomes

$$
\begin{equation*}
2\left(\mathrm{I}-n_{i}\right) \phi_{i}+n_{i} \approx \phi_{i_{z_{i}}}+r_{i} \phi_{i_{r_{i}}}=0 ; \quad(i=\mathrm{I}, 2,3) ; \tag{43}
\end{equation*}
$$

whence it appears that $\phi_{i}$ must have one of the forms

$$
\begin{equation*}
z_{i}^{\frac{2\left(n_{i}-1\right)}{n_{i}}} \Phi_{i}\left(\frac{r_{i}^{n_{i}}}{z_{i}}\right), \quad r_{i}^{2\left(n_{i}-1\right)} \Psi_{i}\left(\frac{z_{i}}{r_{i}^{n_{i}}}\right) \tag{44}
\end{equation*}
$$

in case $n_{i}$ is unity an arbitrary additive constant may be appended to each of these forms. Since $\Phi_{i}$ and $\Psi_{i}$ are arbitrary functions we have here an infinitude of problems. Considering the second of the forms (32) a little further, the equations (25) become in this case

$$
r_{i}^{2} p_{i}=n_{i} x_{i} z_{i} \pm y_{i}^{\prime} \sqrt{r_{i}^{2 n_{i}} \Psi_{i}\left(\frac{z_{i}}{r_{i}^{n_{i}}}\right)-n_{i}^{2} z_{i}^{2}}
$$

$$
\begin{equation*}
r_{i}^{2} q_{i}=n_{i} y_{i}^{z_{i}} \mp x \sqrt{r_{i}^{2 n_{i}} \Psi\left(\frac{z_{i}}{r_{i}^{n_{i}}}\right)-n_{i}^{2} z_{i}^{2}} \tag{45}
\end{equation*}
$$

and if in particular the symbol $\Psi$ indicates the square we have

$$
\begin{align*}
& r_{i}^{2} p_{i}=z_{i}\left(n_{i} x_{i} \pm y_{i} \sqrt{\mathrm{I}-n_{i}^{2}}\right)  \tag{46}\\
& r_{i}^{2} q_{i}=z_{i}\left(n_{i} y_{i} \mp x_{i} \sqrt{\mathrm{I}-n_{i}^{2}}\right)
\end{align*}
$$

from which we conclude that the orbits are represented by the equations

$$
\begin{equation*}
r_{i}^{n_{i}} e^{ \pm \theta_{i} \sqrt{1-n_{i}^{2}}+\beta_{i}}=\gamma_{i}, \quad(i=1,2,3) \tag{47}
\end{equation*}
$$

(d) The case in which each of the functions $\phi_{i}$ and $\psi_{i}$ contains both variables $r_{i}$ and $z_{i}$ leads to a multitude of problems in which these functions are subject to the single conditions

$$
\begin{equation*}
r_{i}\left[2 \phi_{i}\left(\mathrm{I}-\psi_{i_{z_{i}}}\right)+r_{i} \phi_{i_{r_{i}}}+\psi_{i} \phi_{i_{z_{i}}}\right]-2 \psi_{i} \psi_{i_{r_{i}}}=0 \tag{48}
\end{equation*}
$$

(e) If

$$
\left\{\begin{array}{l}
\phi_{i}=a_{i}^{2} /\left\{x_{i}^{2\left(\nu_{i}+n_{i}\right)}\left(\mathrm{I}+\frac{y_{i}^{2}}{x_{i}^{2}}\right)^{n_{i}} \omega_{i}\left(\frac{y_{i}}{x_{i}}\right)\right\}  \tag{49}\\
\psi_{i}=\left(\mathrm{I}-\nu_{i}-n_{i}\right) z_{i}
\end{array}\right.
$$

where $a_{i}$ an arbitrary constant, $\omega_{i}$ an arbitrary function, the integration follows a course parallel to that pursued under ( $b$ ) above, and leads to complicated transcendental equations for the determination of the corresponding orbits.

Vienna,
February 25, 1909.

